
NASA-CR-197027

DEPARTMENT OF COMPI51_R SCIENCE

COLLEGE OF SCIENCES

OLD DOMINION UNIVERSITY

NORFOLK, VIRGINIA 23529

SOFTWARE RELIABILITY STUDIES

j / ,

0 c--17-

By

Mary Ann Hoppa, Research Associate

and

Larry W. Wilson, Principal Investigator

Final Report

For the period ended October 31, 1994

Prepared for

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

Under

Research Grant NAG-I-750

Kelly J. Hayhurst, Technical Monitor

ISD-System Validation Methods Branch

Submitted by the

Old Dominion University Research Foundation

P.O. Box 6369

Norfolk, VA 23508

November 1994

U_

0
4" _ p_.

! ,-" 0
u_ O 0'_
O_ _- 0
2 _ 0

O0

LLLL , £_.
O
t_ t_ LJ 0_

LtJ C) ,--4

e.,4 t-- "U _D

I a._ "U ..
<<OC

,0

0

Software Reliability Report

NAG 1-750
Larry Wilson

Department of Computer Science
Old Dominion University
Norfolk, VA 23529-0162

There are many software reliability models which try to predict future

performance of software based on data generated by the debugging pro-

cess. Our research has shown that by improving the quality of the data

one can greatly improve the predictions. We are working on methodolo-
gies which control some of the randomness inherent in the standard data

generation processes in order to improve the accuracy of predictions.

Mary Ann Hoppa, a PhD student at ODU, has used a LIC version with

ten known bugs to build a database consisting of empirical reliabilities for

each of the 1024 nodes of the partial debugging graph [1]. These reliabili-

ties were each found by subjecting a debugging variant of the software to

a million input cases. This data base has been used to analyze the effect

of the order in which bugs are removed on the reliability predictions of
four well known models [2]. This work found that the models were

indeed sensitive to the order in which the bugs are found. We are in the

process of preparing a second paper which will analyze the effects of us-
ing a surrogate oracle in the data collection. We are interested in the sur-

rogate since our previous data collections required a gold version and thus

were useful only as laboratory techniques. The surrogate oracle is expect-
ed to give good approximations and to be useful in a productive software

engineering environment. If the approximations prove to be highly accu-

rate we will have significantly improved the accuracy of predictions by ex-

isting software reliability models with only a minor increase in debugging
cost.

Pam Bowman, a MS student at ODU, is developing a part of a partial de-

bugging graph using a different LIC specimen. This is being done to

analyze programmer dependency relative to the work done by Hoppa and
will also investigate alternative phenomena. Also, Weimin Shi, a MS stu-

dent at ODU, is working on simulation studies for the Goel- Okomoto

model. These studies will parallel those done earlier by Wenhui Shen for

-2-

the Jelinski-Moranda and Geometric models [3]. These simulation studies

complement the empirical studies in that both are investigating the benefits

of replicated data from the debugging process as opposed to the single

sample data currently used by the models.

Future work will incorporate the information previously generated into an

integrated package with the new results. It is also our hope to further in-

vestigate some of these ideas using the GCS environment and versions,

which are part of the on going NASA-LARC experiment.

References

1. Wilson, Larry W. and Shen, Wenhui, "Software Reliability Perspectives", Old Dominion Univer-

sity Computer Science Department # TR-87-035, 1987.

. Hoppa, Mary Ann and Wilson, Larry W., "Some Effects of Fault Recovery Order on Software

Reliability Modelsi", To appear in the Proceedings of ISSRE 94. Also ODU CS Technical Report
#TR-94-28.

. Shen, Wenhui and Wilson, Larry W., "Simulation Studies of Software Reliability Models ",

NASA Contractor Report 181889. Also released as ODU CS TR-89-10

DEPARTMENT
OF

COMPUTER SCIENC

Technical Report # TR-94-28

Some Effects of Faulty Recovery Order

On Software Reliabiltiy Models

Larry Wilson and Mary Ann Hoppa

Old Dominion University
Computer Science Department

Norfolk, VA 23529

October 15, 1994

Old Dominion University
Norfolk, VA 23529-0162

Technical Report # TR-94-28

Some Effects of Faulty Recovery Order

On Software Reliabiltiy Models

Larry Wilson and Mary Ann Hoppa

Old Dominion University

Computer Science Department

Norfolk, VA 23529

October 15, 1994

Some Effects of Fault Recovery Order on Software Reliability Models

Mary Ann Hoppa

5425 Lawson Hall Key

Virginia Beach, VA 23455
804-464-4121

Larry W. Wilson*

Department of Computer Science

Old Dominion University
Norfolk, VA 23529

804-683-3084
Abstract

Ultrareliable software is required for life critical applications and the assessment of that relia-

bility requires ever greater accuracy from reliability models. Feedback from controlled, repeatable ex-

periments is particularly needed to assess and extend the efficacy of existing software reliability models.

Also, traditional approaches allow the experimenter to formulate predictions using data from one reali-

zation of the debugging process. Thus for ultrareliable applications it is necessary to understand the

influence of the fault recovery order on the predictive performance of reliability models.

Our contribution is twofold in that we describe an experimental methodology using a data

structure called thc debugging graph and apply this methodology to assess the robustness of existing

models. The debugging graph is used to analyze the effects of various fault recovery orders on the

predictive accuracy of several well-known software reliability algorithms. We found that, along a par-

titular debugging path in the graph, the predictive performance of different models can vary greatly.

Similarly, just because a model "fits" a given path's data well does not guarantee that the model would

perform well on a different path.

Further we observed bug interactions and noted their potential effects on the predictive process.

We saw that, not only do different faults fail at different rates, but that those rates can be affected by

the particular debugging stage at which the rates are evaluated. Based on our experiment, we conjecture

that the accuracy of a reliability prediction is affected by the fault recovery order as well as by fault in-

teraction.

Keywords: Software Reliability Models, Prediction, Empirical Studies, Ultrareliable Software

*This research was partially supported by NASA grant NAG-I-750.

-2-

Introduction

Ultrareliablesoftwareis requiredfor life criticalapplicationssuchasthecontrolof nuclear

poweror flightcontrol.Effortstomeetandcertifythislevelof reliabilitywill requireincreasedtesting

aswellasmoreaccuratedatacollectionsandcomputations.If softwarereliabilitymodelsareto be

usefulin thisquestwe mustrefineandimprovethesemodelssignificantly.Theserequirements

motivatedusto investigatesourcesof inaccuracyin existingmodelswiththehopeof improvingtheir

performanceand/orofdiscoveringbettermodels.

It hasbeenobservedthatpredictingthereliabilityof aprogramhasprovedtobeanunexpect-

edlych',dlenging_tskfor overtwodecades[Bas93].Thefirstpublisheddescriptionsof parametric

modelsusedto describefuturesoftwareperformanceappearedin theearly1970's[JeM72,WiS72].

Whilemanyadditionalsoftwarereliabilitymodelshavesincebeenproposed,noonemodelhasem-

ergedasuniversallyapplicable;noris it clearhowtochooseinadvanceamodelforagivenproject.

Typicallysoftwarereliabilitymodelsusea sequenceof interfailuretimesfromthedebugging

processtopredictreliabilityor therelatedquantitiesof failurerateandmeantimetonextfailure.How-

cvcrthcsequenceof interfailuretimesisderivedfromonlyoneof manypossiblerepairorders.If one

assumesdatafromn failuresarebeingused,thentherearen! possibleordersin whichthosefaults

couldhavebeenindividuallyidentifiedandrepaired.Alsouncertaintyabouttheorderof faultrecovery

iscompoundedin thata sampleof sizeoneis usedtorepresenttheinterfailuretimeof thesoftwarefor

eachslageof thefaultremovalprocess.Weinvestigatemultipleordersforthefaultremovalprocess

andisolatetheeffectsof varyingtherecoveryorderbyusinganaverageof multipleobservationsto

representeachinterfailuretime.

It hasbeenconjecturedin theliteraturethatonefailuremaypreventaccesstoor hidecertain

others.Themanifestationof thishasbeenreferredto asthefaultinteractionphenomenon[Dun86].

Otherresearchersclaimthatinpractice,althoughsuchinteractionsmayoccasionallyoccurduringunit

testing,thcyaremuchlesscommonduringsystemtestingor in theoperationalphase[MIO87].Our

datadisplayssomemanifestationsof faultinteractions.

-3-

Webelievethatfaultrecoveryordermayaffecttheaccuracyof predictionsmadebysoftware

reliabilitymodels,andthattheeffectsof buginteractionsaresubsumedby therecoveryorderproblem,

sincefor a particularrecoveryorderthecontextin whicheachfaultcontributesto thefailurerateis

fixed.Theremainderof thispaperwill focusontheuseof thedebugginggraphtoanalyzetheeffectof

recoveryorderonreliabilitypredictionsandisorganizedasfollows.Preliminaryconsiderationsarein

sectionson terminologyandmodels,onthedebugginggraphandona descriptionof theexperiment.

•Data,aredescribed_mdpresentedin sectionsonfaultsizesandpathanomalies,andonpathselections.

Thcreisasectionanalyzingtheperformanceof themodelsfollowedbyoneonconclusionsandissues.

Terminologyand models

Software reliability (R) is the probability of a software product operating for a given period of

time in a particular environment without exhibiting any failures. In many instances, particularly in the

highly cyclic applications with periodic deadlines such as flight control systems, the number of input

c:t'_cs is proportional to the execution time. We will assume this to be true for the remainder of the pa-

per. This will allow us to use the average time of computation for an input case as the given time

period, and R becomes the probability of success per input. The failure rate (F = 1 - R) expresses the

probability that a software product will exhibit a failure during a given time period in its specified en-

vironment. A third impommt quantity is the mean time to failure (MTTF - l/F) which indicates the

number of expected input cases prior to the next failure. We use the term fault recovery to mean the

identification of faults _md the implementation of suitable code repairs to remove them from the pro-

gr_un.

The models examined in this experiment are Jelinski-Moranda [JeM72]; Geometric De-

Eutrophication IMor75]; Basic Musa [MIO87]; and Logarithmic Poisson [MuO84]. The Jelinski-

Moranda model assumes that all faults contribute equally to the unreliability of the program, so that the

plot of failure rate versus time is a step function in which each step essentially represents one "error's

worth" of hazard. In an attempt to describe testing in which an accumulated group of faults is correct-

ed simultaneously or the hazard contributions of faults are not equal, the Geometric De-Eutrophication

m_el assumes a plot of failure rate versus time in which the step size decreases in a geometric se-

-4-

quencewitheachsubsequentfaultremoval.TheBasicMusaandLogarithmicPoissonmodelsarecon-

tinuous,analoguesto theJelinski-MorandaandGeometricDe-Eutrophication,respectively.

TheDebuggingGraph

Supposea programcontainsn knownfaultslabeled1..nrespectively.Therearen! possible

ordersin whichthenfaultscouldhavebeenindividuallylocatedandrepaired.Thedebugginggraphis

usefulfor representingandstudyingthesen! orders.[WiS87].Therows,or levels,of thedebugging

grapharelabeledfrom0 ton,withrowi representingstagei of thedebuggingprocesswherei of then

bugshavebeenrepaired.Thetermvariantreferencesanyversionof theoriginalprogramwithsome

subsetof theknownrepairsinstalled.Eachgraphnoderepresentsa variantandis labeledwithP sub-

scriptedbythesubsetof {1,2.....n} correspondingtothefaultsrepairedin thatvariant.

Thereis asinglenode,labeledP,at level0; it representsthevariantwithnorepairsinstalled.

Likewise,thereisasinglenodeatleveln,labeled$Psub{1.....n}$;it representsthesoftwarewithall n

knownrepairsinstalled.At level1,therearen nodes,labeledSPsub15through$Psubn$,each

representingavariantof theoriginalprogramP withonlyoneof thenknownfaultsremoved.In gen-

er,d, at levelm,$0<=m <=n$,therearen! / (m! (n-m)!) nodes and a total of $2 sup n$ nodes in

the debugging graph.

An edge in the graph represents a repair for one fault and connects one node to another at the

next level, where the subscripts of the adjacent nodes differ in exacOy one element. In general, at level

m, $0 <= m <= n$, each node has (n-m) edges joining it to nodes at level (re+l). This results in a to-

t:d of $2 sup {n+l }$ edges in the debugging graph. A debugging session removes all known bugs and

is represented by a path in the debugging graph from P to SP sub {1...n}$ that follows edges through

exactly one node at each of the levels 0 through n.

In order to obtain empirical reliability estimates each variant is subjected to a large set of in-

puts, generated randomly according to the prescribed usage distribution, and the number of inputs pro-

ducing expected outputs is determined by using an oracle (error detector). This enables each variant's

reliability to be estimated using the calculation: R = (number of "expected" outputs) / (total number of

inputs). Thus each node in the debugging graph subsequently can be labeled with the empirically deter-

-5-

minedreliabilityof itscorrespondingvariant.

Experiment Description

For this preliminary experiment we required non-trivial code developed under controlled

scientific conditions for which a documented debugging history existed. To this end we chose a version

oi- the Launch Interceptor Code (LIC) which was prepared by RTI [Dun86] as part of a previous NASA

experiment. This code consisted of about 500 lines of FORTRAN written by a professional program-

mer to specifications which included the input distribution; it came with the required debugging history

as well ,as a gold version (presumably correct) which could be used to develop an oracle. This version

had twelve known bugs; however, we found that two of them were artifacts of the previous test en-

vironment and did not violate the specifications. The repairs for those two bugs were installed prior to

collecting data. We then consU'ucted a debugging graph for the remaining bugs (n = 10) by using 1

million input c_L_es to estimate R for each of the 1024 nodes as described below.

The software was ported from the NASA Langley Research Center's AIRLAB facility in

Hampton, Virginia to the CS Department Sun network at ODU. A testing environment, LICCtrl (see

Figure I), was tailored for our experiment to generate a large, random (but repeatable) input stream,

and to run two separate subroutines: the gold version; and a selected LIC test variant containing some

combination of known bugs and repairs. On each iteration, both subroutines were exercised using the

same input values _tnd the outputs were compared for equality. Output agreement corresponds to a

successful or "expected" outcome; while output disagreement and/or abnormal termination of the test

variant denotes a failure. Successful runs were tallied and R was calculated for the variant.

read runtime parameters;

for(desired number of runs) {

generate next set of input values;
load common block;

call gold subroutine;
load common block;

call test subroutine;

compare gold and test results;

tally & record;

]
output summary statistics;

exit(0);

-6-

Figure 1. Overall LICCtrl Program Logic

Fault Sizes and Path Anomalies

Since intuitively the debugging process is most likely to recover bugs in a "largest-to- smal-

lest" order, we conjectured that recovering the faults in various "size" orders is appropriate. We applied

a criterion used in earlier experiments which associates bug sizes with their observed failure rates

[Cow91]. Table 1 illustrates the reliability ch_mges realized by installing each of the ten known repairs

in tile initial program P (level 1) versus those changes created by removing only one of the "known

repairs from P1 10 (level 9). At level 1, observed failure behavior for a given fault-inferred by

observing the effects of installing its repair-is subject to the influence of all other faults, both known

and unknown, in the program. At level 9, observed failure behavior for a given fault-inferred by observ-

ing the effects of removing its repair-is not subject to the influence of other known faults, but is

influenced by as yet undiscovered faults in the program.

According to Table 1, the only faults which appear to behave identically at both levels are 7

and 10, with 8 and 9 exhibiting not much difference. In fact we noted that half of the ten bugs con-

sidcred could potentiMiy change ranking depending on whether the size comparison were performed at

level 1 or at level 9. So we used both as possible size rankings when constructing comparison paths.

(Note: Wc defer for now special handling of cases in which the R values are equal, such as bugs 9 and

l0 at level 9, and simply use the ordinal ranking to break des). Table 1 illustrates, as did earlier

Table 1. Some Bug Sizes

Levell

Reliability Change

51.3188

1.4534

0.1368

0.4365

0.6057

0.0051

0.0000

0.0003

0.0000

0.O00l

Repair Level 9

Reliability Change

l 54.6220

2 2.7724

3 0.1472

4 1.1626

5 1.0076

6 I 0.02867 0.0000

8 0.0004

9 0.0001

10 0.0001

-7-

experiments, that by looking at multiple debugging graph levels the observed change in reliability asso-

ciated with installing a particular repair can vary with the presence or absence of the other faults in the

program [WhH90].

The previous paragraph revealed that even when considering a repair which is known to be

"correct," one cannot always expect it to have the same reliability growth effect, since that effect

depends on when the repair is installed during the debugging process. Examination of various levels of

the debugging graph and the attempts to "size" the software's known faults revealed that not only do

individu;d faults fail with different rates [NaS82], but that the rate experimentally associated with a

given fault is a function of the program's debugging state at the time assessment is made. We attribute

this effect to interactions among faults and note that these interactions may result in unexpected

changes in the failure behavior of the variants.

Similarly, one might expect that the proportion of inputs producing expected outputs would

always increase during a debugging session as each subsequent fault is repaired by a known "correct"

fix. By inspecting sample debugging paths, however, we realized that installing a given repair can

result in positive reliability growth, "low-to-no" change or even negative growth depending on the stage

at which the repair is done. There may even be a subset of the known repairs which, when installed,

results in a higher reliability figure than installing all known repairs. In the past, such behavior has been

attributed to partial or incorrectly done repairs. The anomalies in reliability growth on certain paths

lead us to alternative conclusions. Not only is the rate experimentally associated with a given fault sub-

jcct to the progr,'un's debugging state, but the installation of a correct repair may result in a negative

reliability growth. We believe these phenomena are physical manifestations of interaction effects that

need to bc taken into account during software reliability modeling.

Path Selections

For model comparison purposes, we wanted to choose a variety of debugging paths based on the

graph construction effort described above. Debugging paths were constructed according to the fault

recovery criteria enumerated in Table 2. The path pairs 1 & 3 and 2 & 4 were intentionally chosen to

be intuitive (largest-to-smalles0 and counter-intuitive (smallest-to- largest) recovery orders, respectively.

-8-

Paths 5 & 6 are the intuitive and counter-intuitive examples of hybrid paths. The intent of a hybrid is

to size-rank the first half of the known faults with respect to their behavior in the otherwise unrepaired

program (at level 1), and the remaining faults with respect to their behavior in the otherwise maximally

repaired program (at level (n-l)). Such paths may more accurately reflect reality in the sense that early

in the debugging process, bugs exist in the presence of many others; while later bugs are ranked in an

isolated fashion to reflect the more purified nature of the software that exists at that time. Paths 7

through 10 were included to stress the predictive models by making the reliability improvements oscil-

late between relatively large and small steps. Paths 11 & 12 recover faults in mixed size orders, while

Path 13 represents fault repair in the original recovery order.

Inspection of the empirically calculated R value sequences associated with each of these paths

rcve_ds that they collectively illustrate a variety of anomalies (e.g., fiat or negative reliability growth

scqucnces), intentionally "expected" and "unexpected" repair orders (e.g., largest-to- smallest versus

sturdiest-to-largest), and predominately high as well as predominately low R values.

Table 2. Description of Debugging Paths

Path Construction Method

1 largest-to-smallest order v_.r.t, level 1 size rankings

2 smallest-to-largest order w.r.t, level 1 size rankings

3 largest-to-smallest order w.r.t, level 9 size rankings

4 smallest-to-largest order w.r.t, level 9 size rankings

5 five largest repairs in non-increasing size order w.r.t, level 1 size rankings, followed by

the remaining five repairs in non-increasing size order w.r.t, level 9 size rankings

6 five smallest repairs in non-decreasing size order w.r.t, level 1 size rankings, followed by

the remaining five repairs in non-decreasing size order w.r.t, level 9 size rankings

7 ahemate the largest remaining repair followed by the smallest remaining repair w.r.t.

level 1 size rankings

8 ahemate the smallest remaining repair followed by the largest remaining repair w.r.t.

level 1 size rankings

9 ahemate the largest remaining repair followed by the smallest remaining repair w.r.t.

level 9 size rankings

10 alternate the smallest remaining repair followed by the largest remaining repair w.r.t

level 9 size rankings

11 medium, small and large repairs in mixed order w.r.t, level I size rankings

12 medium, small and large repairs in mixed order w.r.t_ level 9 size rankings

13 original order (1,2,3 etc.)

-9-

The Jelinski-Moranda [JeM72], Geometric De-Eutrophication [Mor75], Basic Musa [MIO87], and

Logarithmic Poisson [MuO84] models were implemented in the C programming language and executed

on Sun SparcStations. We used the relationship MTrF = 1 / (1 - R) to generate input sequences for

each chosen path. These sequences were used as inputs for each model, and the failure time s predicted

by the models were compared against the known, empirically observed failure data. Along each chosen

debugging path, (i+l) experimentally generated consecutive MTTFs were used as inputs to a model to

predict the (i+l)st failure time for each i from 1 to 10. (Note: The 0th input value used was derived

from the R v_due ,associated with the variant P.)

As a measure of a model's predictive accuracy, the predicted failure time was in each case

• compared with the corresponding empirically determined MTTF calculated from the R value determined

from the data for the appropriate variant. The comparison was normalized by taking the ratio of

estimated MTrF ,-t_ predicted by a model to the empirical MTTF. Ratios close in value to 1 are inter-

preted ,as indicating accurate predictions, while values greater than 1 indicate optimistic predictions and

those between 0 and 1 indicate pessimistic predictions. For example, a predicted M'Iq'F that is an order

of magnitude greater than the actual MTrF produces a ratio value near 10. This implies that the

software would probably fail ten times sooner than one would have expected based on the estimated

M'FrF vaiuc; hence the model's prediction is optimistic.

Performance Analysis

The prediction ratios for the four models are shown in Tables 3 through 6. The tables should

be read in a row-wise fashion, where each row represents predictions along the debugging path cited in

its left-most column. Six decimal places are carried to reflect the precision of the MTTF values input

to the models. Nine predictions are presented for each path, they are labeled in the tables as "MTrF

Prediction Stages." These range from the prediction of mean time to second failure to the prediction of

the mean time to tenth failure. Although we can make a prediction of mean time to eleventh failure,

without additional debugging data we lack the empirical R value needed to calculate a comparison ratio

in this case. We marked exceptional cases with asterisks; appropriate interpretations are indicated with

each table.

- 10-

The underlyingassumptionof the Jelinski-Morandaalgorithm-that"all bugsarecreated

cqual"-probablymakesit inappropriateforrealisticapplications.It is interestingthatthemodel'spred-

ictionswereinitiallyquitegoodfor the"mixed"recoveryorderpaths(I 1and12).Althoughit other-

wisegenerallyfailedat prediction,thealgorithmperformedconsistentlyoverthe"intuitive"paths,

assessinga finitenumberof bugsafterthefirstfewiterations;whereas"counter-intuitive"pathsproved

tobemorechallenging,probablydueto"low-to-no"growthcharacteristics.

Forseveral"counter-intuitive"paths(paths2,4and6),theGeometricDe-Eutrophicationalgo-

rithmprovidedthemostaccurateoverallpredictionspossiblysincetheeffectof thelargestfaultwas

postponedin thoseparticularcases.It alsogavegoodpredictionsfor "mixed"recoveryorderpaths(11

and12)until thelasttwopredictivestageswheretheperformanceagaindegeneratedafterthedata

representingthelargestfaultwasintroduced.Along the remaining paths, the model appeared to try and

correct its predictions at some point; but the predictions tended to grow either increasingly optimistic

or pessimistic thereafter.

The behavior of the Basic Musa model, as compared to that of its discrete counterpart Jelinski-

Moranda, can be viewed as highly inconsistent from path to path as well as along any given path.

Although it made predictions, all were either very optimistic or pessimistic, and it often incorrectly

predicted perfect software after a large relative reliability improvement step. Interestingly, however, the

influence of the very large repair (i.e., the fix for bug 1) appeared to be mitigated if it were inserted

early.

The primary challenge in using the Logarithmic Poisson model was determining parametric values

which "fit" the functions, given the input data precision and host computer accuracy; this problem was

particularly evident when "small-to-large" or "mixed" repair orders were p resented as inputs. However

this model performed extremely well on the "intuitive" paths (1,3 and

5) and the original order path (13), with possibly a very slight preference for the intuitive paths. It

was the only model to perform well on the intuitive path. We note also the closeness of the predictions

of this model and the Basic Musa model on portions of some paths (e.g., paths I 1 and 12).

-11-

Path

Table 3. Jelinski-Moranda Prediction Ratios

* no solution; N is infinite or no R growth present

** no solution," N is finite

MTTF Prediction Stage

2 3 4

2 * _

4 _ _ *

5 * ** **

6 * _ *

7 _ _ _

9 * * **

10 * ** **

11 1.00231 .993849 1.00127

12 1.00231 1.00162 .990453

13 * ** **

5

*$

.992366

.990931

6 7 8

* * .984969

* * .986483

* * .986483

** 4.30056 **

1.00038 •977324 .992851

.999741,, I •977105,, .992865,,

9 10

.966156 1.61788e-5

.967225 1.61919e-5

.967225 1.61919e-5

1.83469e-5 **

1.65146e-5 **

Table 4. Geometric De-Eutrophication Prediction Ratios

Path MTITPrediaion Smge

2 I 3 4 5 6 7 8 9 10
1

5.254125 4.094815 0.653375 0.525571 0.131187 1.722893 6.503249 26.333447 64.380750

1.000000 0.999998 0.999995 0.999912 0.997586 0.991224 0.984954 0.966084 0.000016

5.254125 3.636669 0.728972 0.544683 0.133134 1.731698 6.522468 23.720902 64.505362

1.000000 0.999998 0.999995 0.999912 0.997586 0.988216 0.986459 0.967144 0.000016

5.254125 4.094815 0.653375 0.525571 0.131187 1.722893 6.503249 23.700102 64.607380

1.000000 0.999998 0.999995 0.999912 0.997586 0.988216 0.986459 0.967144 0.000016

11.434335 2.787241 2.999700 1.656010 2.123555 0.315943 1.102452 0.316568 0.031772

0.087456 2.587646 1.845143 3.083805 2.130480 0.423873 1.044780 0.011590

#

I

2

3

4

5

6

7

8

9

10

II

12

13

11.434335

0.087456

1.002302

1.002302

5.254125

2.787241

2.587646

0.993848

1.001619

6.713279

2.999700

1.845143

1.001238

0.990452

2.491269

1.470728

3.083805

0.992335

0.990893

0.087452

2.045788

1.892095

1.000283

0.999628

0.087452

2.782936

0.357346

2.628615

0.977219

0.976982

2.245986

!.151743

0.469600

0.992475

0.992461

6.142692

0.326621

0.217302

0.000018

0.032295

0.030771

0.622673

0.000017 0.699562

22.041007 53.985926

- 12-

Table 5. Basic Musa Prediction Ratios

* indicates software predicted to be perfect

Path MTTF Prediction S_ge

2 3 4 5 t 6 I 7 8 9 10

0.229752 0.191542 0.627602 5.12068e+10 * 204.19 3.42157 0.480884 0.174262

0.5 0.333333 0.249999 0.199983 0.166269 0.141748 0.123628 0.108139 1.64873e-6

0.229752 0.170157 3.04723 3.46102e+!0 * 203.974 3.42072 0.564199 0.221082

0.141318 0.124005 0.108139 1.64873e-6

#

1

2

3

4

5

6

7

8

9

I0

11

12

13

0.5 0.333333 0.249999 0.199983 0.166269

3.42157 0.56425 0.2210970.229752 0.191542 0.627602 1.5362e+07 204.19

0.5 0.333333 0.249999 0.199983 0.166269 0.141318 0.124005 0.108139 1.64873e-6

0.5 0.153168 0.26595 0.114748 0.229378 0.0191406 4.35596 567340 *

0.0437279 0.700702 0.114876 0.394062 0.0957884 0.307529 0.31857 18.2149 *

0.5 0.153168 0.26595 0.10191 0.286481 0.0215521 3.91331 385886 *

0.0437279 0.700702 0.114876 0.394062 0.0850967 0.387969 1.54892 3.31808e+12 *

0.499955 0.330746 0.249999 0.197805 0.166666 0.139036 0.125 2.03437e-06 598.426

0.499955 0.333332 0.247306 0.198407 0.166666 0.139036 0.125 1.83192e-06 219.068

0.229752 0.31376 0.119647 1.67047e+10 * 16.3482 3.65748 0.671158 0.275259

Table 6. Logarithmic Poisson Prediction Ratios
* indicates no solution for desired precision

Palh

#

1

2

3

4

5

6

7

g

9

10

11

12

13

0.836174

0.500002

0.836174

0.500O02

0.836174

0.500002

0.954732

0.0437315

0.954732

0.0437315

0.836174

0.19322

0.333334

0.171919

0.333334

0.193228

0.333334

0.899645

O.899645

0.253012

0.25

0.384522

0.25

0.253012

0.25

0.275298

0.418087

0.275298

0.418087

M'VIT Prediction Stage

0.994774

0.991078

0.994774

0.514248

0.514248

1 86 1 7
1.17794 1.52371

0.16627 *

1.1759 1.5226

0.16627 *

1.17794 1.52371

0.16627 *

0.0967482 *

0.276793 *

0.0860996 0.385635

0.166667 0.139037

0.166667 0.139037

1.19901 1.53566

1.35359

0.123629

1.35247

0.124005

1.35359

0.124005

0.553978

0.126748

0.550244

0.192425

0.125

1.1899

0.10814

1.1887

0.10814 *

1.1899

0.1O814

0.591096

O.587578

2.48459e-06

I 10

1.01764

1.02948

1.03081

0.645629

0.52569

0.643364

0.750928

0.330746 0.249999 0.197806

0.333332 * 0.198408 0.125 * *

0.315014 * 0.231535 1.3109 1.18671 1.03164

-13-

The data derived from comparing the four reliability models clearly show that along a given

debugging path, the predictive performance of these models can vary greatly (e.g., Path 1 in Tables 3

through 6). Additionally, just because a model appears to "fit" a given path's data well in terms of its

predictive performance, there is no guarantee that the model would still appear as appropriate had those

faults been recovered in a different order (e.g., contrast paths 4 & 7 in Table 4). In other words, if the

experimenter ev,'duates models based on a single re_dization of the debugging process, with the faults

recovered and corrected in a single order, he or she might reject a model that could perform quite well

using d.ata from an ,alternative recovery order.

Conclusions and Issues

We have presented a methodology involving the debugging graph whereby the performance of

software reliability models can be analyzed under laboratory conditions. This procedure allows one to

use the average of large sample sets to replace the single point samples normally used as input for these

models and thus to scrutinize their performances with some of the randomness removed from the input

data.

In this preliminary experiment we observed that recovery order is an important factor in the

potenti_d performance of these models. Further, based on this work it appears that if one could pick the

modcl, control the recovery order and use the average of large samples for the interfailure times, then

one could expect more accurate predictions. Further experiments are needed involving new specimens

and problems to support this conjecture. Also it is a challenge to implement improvements in the

software prediction process based on these ideas.

We observed multiple manifestations of bug interactions in this dam. Further exploration of

the debugging graph database should be conducted to study side-effects of bug interactions; for exam-

ple, a debugging path along which the outputs from selected inputs oscillate between agreeing and

disagreeing with the oracle may provide new clues as to the nature of bug interaction.

- 14-

References

[ACL86] Abdalla A. Abdel-Ghaly, P. Y. Chart and Bev Littlewood, "Evaluation of Competing Software

Reliability Predictions," IEEE Transactions on Software Engineering, vol. SE-12, no. 9, September

1986, pp. 950-967.

[Bas93] Farokh Bastani, "Forward: Software Reliability," IEEE Transactions on Software Engineering,

vol. 19, no. 11, November 1993, pp. 1013-1014.

[Cow91] Christopher Cowles, "Measuring Software Reliability Models," Master's Degree Project Report

(unpublished), Department of Computer Science, Old Dominion University, Norfolk, Virginia, 1991.

[Dun86] Janet R. Dunham, "Experiments in Software Reliability: Life-Critical Appfications," IEEE

Transactions on Software Engineering, vol. 12, no. 1, January 1986, pp. 110-123.

[JeM72] Z. Jelinski ,and P. Moranda, "Software Reliability Research," Statistical Computer Performance

Evaluation, Walter Freiberger, (ed.). New York: Academic Press, 1972, pp. 465-483.

[Mor75] P. B. Moranda, "Prediction of Software Reliability During Debugging," Proceedings of the

Annual Reliability and Maintainability Symposium, 1975, pp. 327-332.

1MIO87] John D. Musa, Anthony Iannino and Kazuhira Okumoto, Software Reliability: Measurement,
Prediction, Application. New York: McGraw-Hill Book Company, 1987.

IMUO84] J. D. Musa and K. Okumoto, "A Logarithmic Poisson Execution Time Model for Software

Reliability Measurement," 7th IEEE International Conference on Software Engineering, 1984, pp. 230-
238.

[NaS82] Phyllis M. Nagel ,and James A. Skrivan, "Software Reliability: Repetitive Run Experimenta-

tion and Modeling," CR-165836, NASA Langley Research Center, Hampton, Virginia, February 1982.

[WhH90] Richard L. White and Christine F. Harbison, "The Error Graph: Research in Software Relia-

bility," M:Lgter's Degree Project Report (unpublished), Department of Computer Science, Old Dominion

University, Norfolk, Virginia, 1990.

[WiS72] K. G. Wilkinson and M. L. Shooman, "Probalistic Models for Software Reliability Prediction,"

Statistical Computer Performance Evaluation, Walter Freiberger, (ed.). New York: Academic Press,

1972, pp. 485-502.

[WiS87] L_'y Wilson and Wenhui Shen, "Software Reliability Perspectives," TR-87-035, Old Domin-

ion University, Norfolk, Virginia, 1987.

